Перевод: с русского на все языки

со всех языков на русский

возникать в результате того, что

  • 1 возникать в результате того, что

    Возникать в результате того, что-- The error in the extrapolated surface temperature arises from the fact that the thermocouples do not record the temperatures precisely at the centre lines.

    Русско-английский научно-технический словарь переводчика > возникать в результате того, что

  • 2 возникать

    An earthquake is generated (or develops, or occurs) when two blocks...

    The potential appearing across the output terminal is...

    These forces arise from the displacement of the aileron.

    The methylamines are widely distributed in nature where they arise probably as the result of decomposition of...

    The strains that are brought about in steel during the hardening process...

    Planets may come into being (or existence, or may result) when small planetesimals fall together.

    Above 1000°F another process is coming into play.

    Under such conditions, it is possible that a crack may develop in a furnace.

    Under these conditions a bias will be developed because of the flow of electrons from grid to ground.

    Problems invariably occur which call for...

    A wave originating at point can reach any of the several detectors.

    A model of this type can be changed many times during the construction as new problems present themselves.

    Chemistry grew out of the black magic of the dark ages and the alchemy of the middle ages.

    This definition came about because it simplified the study of control systems.

    A dispute which ensued between the two groups...

    These forces are generated in the earth's interior.

    Shear is produced in columns by () variation in...

    II

    Ultimately, a molecule similar to modern catalase came into existence.

    Brain tumours are not likely to arise from a mature neuron.

    Planets may result [or come into being (or existence)] when small planetesimals fall together.

    As a result there occurs what is known as the Cerenkov effect.

    These craters date back to a period of...

    Interest in developing... goes back to the 1950s.

    III

    Such forces occur when...

    In our galaxy, supernovae occur once every 30 years or so.

    Three questions might come to mind about the properties of...

    * * *
    Возникать -- to appear, to develop (появляться), to arise, to come into being; to emerge, to originate (о трудностях, вопросах)
     Several problems have arisen during the course of the work which have required system development.
     Did the Neolithic of southern Greece really come into being as abruptly as it now appears it did?
     To troubleshoot a scale system problem, first determine in which scale system element the problem originates.

    Русско-английский научно-технический словарь переводчика > возникать

  • 3 возникать

    (= возникнуть, появляться) arise, come into existence, emerge, appear, spring up, there occur, originate, come about from
    В зависимости от... возникают три случая. - Three cases arise depending on whether...
    В основном, эти вариации возникают вследствие... - Basically, these variations result from...
    Возникает вопрос, действительно ли... - The question arises whether...
    Возникает вопрос, действительно ли... - The question now arises of whether...
    Возникает вопрос, действительно ли обратное (утверждение и т. п.) выполняется необходимо. - A question arises as to whether the converse necessarily holds.
    Возникает еще одна возможность... - A further possibility arises that...
    Все это возникает как частные случаи (чего-л). - All of these arise as particular cases of...
    Данная книга возникла в результате чтения курса в... - This book grew out of a course taught at...
    Данная концепция возникла очень давно. - The concept goes back a long way.
    Данное затруднение не возникает, когда (= если)... - This difficulty does not arise when...
    Данный вопрос возник, поскольку... - This issue is raised here because...
    Другая проблема возникает, когда... - Another problem arises when...
    Затруднение, которое мы обсуждали, не возникнет, если... - The difficulty we have been discussing will not arise if...
    Знак минус возникает, потому что... - The minus sign appears because...; The minus sign arises from the fact that...
    Из физических соображений это возникает вследствие... - Physically this arises because of...
    Из этого вытекает следующий вопрос:... - This brings up the question:...
    Имеются три важных затруднения, которые возникают при анализе... - There are three important complications which arise in the analysis of...
    Иногда у нас возникает ситуация, что... - Sometimes we have the situation that...
    Интересный случай возникает, когда... - An interesting case occurs when...
    Как указывалось выше, данный эффект возникает вследствие... - As indicated above this effect is due to...
    На самом деле, такая ситуация возникает, потому что... - Effectively, the situation arises because...
    Некоторые из этих трудностей возникают из-за того, что..., - Some of the problems arise from the fact that...
    Новое свойство возникает, когда мы рассматриваем... - A new feature appears when we consider...
    Очевидно, что эта ситуация возникает просто потому, что... - It is obvious that this situation arises simply because...
    Подобная ситуация возникнет (каждый раз), когда мы рассматриваем... - A similar situation will arise when we discuss...
    Подобные процессы просто не возникают. - Such processes simply do not occur.
    Подобный эффект возникает очень часто. - Such phenomena are of very frequent occurrence.
    Работа, представленная в данной статье, возникла путем сотрудничества между отделением... и... - The work presented in this paper came about through a collaboration between the Department of... and...
    Серьезная проблема в большинстве лабораторных измерений возникает из-за того, что... - A severe complication in most laboratory measurements arises from...
    Следовательно, в связи с..., не возникает никаких трудностей. - Therefore, no difficulties arise in connection with...
    Сложности возникают, как только мы пытаемся... - Difficulties occur as soon as we try to...
    Случай такого рода возникает, когда... - This kind of case arises when...
    Случай, вызывающий особый интерес, возникает, когда... - A case of special interest arises when...
    Существенно более серьезный недостаток (= дефект) возникает при/ когда... - A much more serious defect is encountered with...
    Теперь возникает вопрос, а действительно ли... - The question now arises as to whether...
    Теперь возникает вопрос, как могут птицы ориентироваться после захода солнца. - The question now arises as to how birds can navigate after sunset.
    Теперь мы разовьем некоторые из более простых концепций, которые возникают в/ при... - We now develop a few of the simpler concepts that arise in...
    Трудно увидеть, как эти различия возникают из
    (
    чего-л). - It is difficult to see how these differences could arise from...
    Трудность возникает, когда... - A difficulty arises when...
    Уравнение такого типа также возникает при изучении... - An equation of this type also arises in the study of...
    Эта проблема не возникает при/ когда... - This problem does not arise with...
    Эта ситуация может также возникнуть, если... - This situation may also arise if...
    Эта терминология возникла на ранних этапах становления физики элементарных частиц. - This terminology dates from the early days of particle physics.
    Эта трудность возникает вследствие использования... - This difficulty arises from the use of...
    Это возникает исключительно из... - This arises entirely from...
    Этот эффект обычно возникает, например, в окрестности... - The phenomenon commonly occurs, for example, near...

    Русско-английский словарь научного общения > возникать

  • 4 результат

    Результаты по
     They discuss experimental verification of theoretical results on the lubricant film thickness in cold forging.
     The apparent contradiction between our findings on pivot location, and results to the contrary, may well be attributed to differences other than pivot location.
    —полученные результаты приведены в виде графика на рис.
    —типичные результаты показаны на
    —тщательно разделять результаты расчётов, основанных на... и на

    Русско-английский научно-технический словарь переводчика > результат

  • 5 побуждение

    = импульс
    Психически осознанное желание совершить определенное действие. Желания и связанные с ними мысли могут быть преходящими и кратковременными либо возникать постепенно. В любом случае побуждение имеет качество побуждающей силы, и, если действие сдерживается, может возникнуть состояние крайнего напряжения.
    Обычно побуждения представляют собой фантазии, проистекающие из Оно, хотя выражение может находить и проистекающая из Сверх-Я потребность в наказании. Как правило, побуждения пробиваются в сознание тогда, когда ослаблено вытеснение или когда содержание фантазий непосредственно связано с мыслями, отношениями или ситуациями. Поэтому психоаналитическая ситуация и перенос способствуют осознанию побуждений.
    По своему характеру побуждения являются эротическими или агрессивными. В повседневной жизни обычных людей побуждение может стать непосредственной причиной действия, ведущего к достижению желанной цели. Крайние, неконтролируемые формы таких импульсивных действий наблюдаются при расстройствах побуждений. С другой стороны, большинство побуждений имеют более сложную судьбу, взаимодействуя с защитными механизмами и выражаясь в различных компромиссных образованиях, таких как отстроченное удовлетворение или невротические симптомы. В таких случаях побуждение не обязательно приводит к действию; вместо него оно может проявиться в обсессиях или фобиях. Например, пациентка, страдающая сильным страхом высоты, благодаря осознанию своих импульсов начинает понимать, что ее страх высоты появился в результате того, что она защитным образом обратила против себя гнев и агрессивное побуждение вытолкнуть свою мать в распахнутое окно.

    Словарь психоаналитических терминов и понятий > побуждение

  • 6 лияш

    лияш
    -ям
    1. быть (кем-чем-л.), стать каким-л., как-л.

    Поро лийза будьте добры;

    кугу лияш стать взрослым.

    Пӧръеҥ шочынат – пӧръеҥак лий. Калыкмут. Родился мужчиной – будь мужчиной же.

    – Таза, виян лий, Сидор Поликарпыч! М. Большаков. – Будь здоров, Сидор Поликарпыч!

    – Толынат гын, уна лий, шич, ӱдырем. В. Иванов. – Если пришла, будь гостем. Сядь, доченька.

    2. быть, бывать, побывать, побыть, пробыть, находиться где-л.

    Отпускышто лияш быть в отпуске;

    фронтышто лияш быть на фронте.

    Мый каникуллан веле толын каенам; ӱмаште колхозышто практикыште лийынам. В. Чалай. Я приезжал только на каникулы; в прошлом году был в колхозе на практике.

    (Санюк:) А врач контузий деч вара тӧрланаш, эре яндар южышто лияш кӱштен. Н. Арбан. (Санюк:) Чтоб поправиться после контузии, врач предписал мне находиться больше на свежем воздухе.

    3. быть, побыть, находиться рядом с кем-чем-л., у кого-чего-л.

    Воктене лияш быть (находиться) возле кого-чего-л.;

    пашаште лияш находиться на работе.

    Тудо (Алексеев) Смелов дене лие, Галанцев дене мутланыш. Н. Лекайн. Алексеев был у Смелова, разговаривал с Галанцевым.

    «Авай, йӧратымем, вучо, вашке мием, курымешлан пеленет лиям». В. Дмитриев. «Мама, любимая моя, жди, скоро приеду, всегда буду с тобой».

    4. делаться, сделаться; становиться, стать кем-чем-л., каким-л.

    Космонавт лияш стать космонавтом;

    кугу лияш стать взрослым.

    Утларакшым тудо (Эльмар) мӱндыр эллаш коштшо корабльын капитанже лияш шона. А. Бик. Эльмар больше всего мечтает стать капитаном дальнего плавания.

    Ялыште ик арня жаплан тымык лие. В. Чалай. В деревне на неделю стало тихо.

    5. случаться, случиться; происходить, произойти; совершаться, совершиться

    Нимат лийын огыл ничего не произошло.

    Ече дене коштмылан ӧрман огыл, манеш (ватем). Коштынам гын, манеш, мо лийын вара? М. Шкетан. Не стоит удивляться катанию на лыжах, говорит моя жена. Что случилось, говорит, от того, что я каталась?

    Революций деч вара марий ялыште кугу вашталтыш лийын. Й. Ялмарий. После революции в марийской деревне произошли большие изменения.

    6. состояться; произойти, получить осуществление

    Погынымаш лие состоялось собрание.

    Эрлашыжым Тумерсолаште футбол дене модмаш ыш лий. В. Косоротов. На следующий день в Тумерсоле игра в футбол не состоялась.

    Чачин сӱанже Илян кече деч ончыч изарнян лие. С. Чавайн. Свадьба Чачи состоялась в четверг перед Ильиным днём.

    7. получаться, получиться; появляться (появиться) в результате чего-н

    Ик-кок минут гыч тугак лие. Нунылан Эркавай мӧҥгӧ каяш шӱдыш. И. Васильев. Через одну-две минуты так и получилось. Эркавай велел им идти домой.

    – Волышыч? Ылыжте вес понарым. Лие? Сай. Я. Ялкайн. – Ты спустился? Зажги другой фонарь. Получилось? Хорошо.

    (Йыванын) ойлымыжо тыгак лие. Орваш пум оптен шындымеке, оза имньыжым кычкырал колтыш: «Но-о, шем алаша!» Н. Лекайн. Что говорил Йыван, то и получилось. Нагрузив телегу дровами, хозяин крикнул на свою лошадь: «Но-о, вороной!»

    8. оказываться, оказаться; очутиться где-л.

    Вашмутым вучен шуктыдеак, пече гоч вончен, (Келай) уремыштат лие. К. Васин. Не дожидаясь ответа, Келай, перепрыгнув через забор, уже очутился на улице.

    Ялтай кугызан кум эргыже, ӱдыржӧ, кок шешкыже, адак Ганя олыкышко лектын кайышт. Лу минут гыч шудылыкыштат лийыч. Д. Орай. Три сына, дочь, две снохи старика Ялтая да ещё Ганя пошлина луга. Через десять минут они оказались уже на сенокосе.

    9. оставаться (остаться) где-л. навсегда или надолго

    Шочашыже шурно моткоч сай шочын да, чыла пасуэшак лийын. В. Косоротов. Уродиться-то хлеба очень хорошо уродились, но на полях же и остались.

    10. удаваться, удасться; приходиться, прийтись; доводиться, довестись; испытывать (испытать) удачу в чём-л.

    Тӱшкаште оҥай огылат, шӱм-кыл почын мутланаш ыш лий. М. Евсеева. Не удалось поговорить по душам – при людях было неудобно.

    11. образоваться, получаться, получиться; возникать, возникнуть

    Тыгеракын, мемнан ялыште «Йошкар маяк» колхоз лие. Таким образом, в нашей деревне образовался колхоз «Красный маяк».

    А Яльчик ер гай-влакышт мланде порволымо дене лийыныт. М.-Азмекей. Озёра, подобные озеру Яльчик, образовались в результате провала земли.

    12. деваться, деться; исчезать, исчезнуть; пропадать, пропасть

    Чачавий гына ала-кушко лийын, тудын нерген ик еҥат огеш ойло. С. Чавайн. Только Чачавий исчезла куда-то, никто не говорит о ней.

    Майор Строев тудым (полковник Оскудам) коклан-коклан ончалеш: «Кугешныме койышыжо кушко лие?» В. Юксерн. Майор Строев поглядывает изредка на полковника Оскуду: «Куда же делось его высокомерие?»

    13. приходиться, доводиться; быть с кем-н. в каком-н. родстве

    Мемнан шешкына Викторын ӱдыржӧ лиеш. В. Иванов. Наша сноха приходится Виктору дочерью.

    Никандр Семёнович – мыйын изи годсек пырля кушмо йолташем. Эше родо-тукымна лиеш: ачайын шольыжо Никандрын акажым марлан налын. М. Казаков. Никандр Семёнович – мой близкий друг с детства. Ещё доводится мне роднёй: младший брат моего отца женился на старшей сестре Никандра.

    14. наступать, настать; начинаться, начаться (о времени, состоянии)

    Йӱд лие. Шумат ден марий пеш шукышкен кутырен шинчышт. Я. Ялкайн. Наступила ночь. Шумат и мужик разговаривали очень долго.

    Перерыв лие, Виталий Тоня деч ойырлен огыл. В. Иванов. Наступил перерыв, Виталий не отходил от Тони.

    15. находиться, найтись; обнаружиться, отыскаться

    Кандашле вич кроватян ик пӧлемыште Ачинланат вер лие. Я. Ялкайн. В комнате, в которой стояли восемьдесят пять кроватей, нашлось место и Ачину.

    16. телиться, отелиться, ягниться, оягниться (о корове, овце)

    Шорык лийын овца оягнилась.

    Таче эрдене изи ушкалем лияш тӧчен. Шкеж гаяк мугыла, шем-ола изи презым ыштен. Я. Элексейн. Сегодня утром моя маленькая корова отелилась. Принесла похожего на себя комалого, чёрно-белого телёнка.

    Ушкал-влак лияш тӱҥалыныт, сайракын пукшаш кӱлеш, йӱашышт леве вӱд лийже. М. Иванов. Коровы начали телиться, надо их получше кормить, и чтоб вода для питья была тёплая.

    17. зреть, созревать; поспевать, поспеть

    Шурно лийын хлеба созрели;

    монча лийын баня поспела.

    18. сделаться, превращаться, превратиться; принять иной вид, перейти в другое состояние, стать чем-н. иным

    Начий шортеш, пуйто уло ойгыжо шинчавӱд лийын. М. Иванов. Начий плачет, будто всё её горе превратилось в слёзы.

    Эрден вӱдлан волымет годым вӱдварат лиям ыле. А. Бик. Стал бы я твоим коромыслом, когда ты утром спускаешься за водой.

    19. возиться, заниматься чем-н. кропотливым, трудным, а также делать что-н. очень медленно

    – Кувай, мундырам ужыч? – манеш (ӱдыр). – Мундырат дене ит лий, – манеш кува. – Мыланем сомыл ышташ полшо! К. Четкарёв. – Бабушка, ты видела клубок? – говорит девушка. – Не возись ты со своим клубком, – говорит ей старуха. – Помоги мне управиться с домашними делами.

    20. в сочет. с инфинитивом на -аш выступает в роли всп. гл. и образует модальную форму со значением: решения, обещания или согласия совершить действие

    Мияш лийын он решил (обещал) прийти (туда).

    Шуко кандидатурым шерын лекна. Вара Красновым темлаш лийна. К. Скворцов. Перебрали много кандидатур. Затем решили рекомендовать Краснова.

    Институт гыч пӧртылмем ӱдыр вучаш лийын. В. Иванов. Девушка обещала ждать моего возвращения из института.

    (Микайлан) пеш сӧрвалымыжлан кӧра фельдшерат каяш лие, тӱрлӧ эмым погыстараш тӱҥалеш. А. Эрыкан. Из-за того, что Михайла очень умолял его, фельдшер согласился ехать, стал собирать разные лекарства.

    21. в сочет. с причастиями на -ше (-шо, -шӧ), -дыме (-дымо, -дымӧ) выступает в роли всп. гл. и образует модальную форму со значением притворности действия

    Кайыше лиям притворюсь, что ухожу;

    рушла моштыдымо лияш притворяться незнающим по-русски.

    Омо ужшо лийыт, юмо ужшо лийыт – ӧрат веле. М. Шкетан. Поразительно: то притворяются, что видели сон, то делают вид, что видели самого бога.

    – Куку але лыве нерген йодат? – лӱмынак умылыдымо лие Чендемерова. В. Иванов. – Ты о ком спрашиваешь – о кукушке или бабочке? – притворилась нарочно непонимающей Чендемерова.

    Составные глаголы:

    Марийско-русский словарь > лияш

  • 7 получаться

    несов. - получа́ться, сов. - получи́ться
    1) (с прил. или нареч.; оказываться) turn out (+ adj), come out (as), be (+ adj)

    результа́ты получи́лись блестя́щие — the results turned out brilliant

    вы́вод получи́лся неожи́данный — the conclusion was unexpected

    но получи́лось ина́че — but it turned out otherwise

    замеча́ние получи́лось гру́бым — the remark came out as rude

    так получи́лось безл.it (just) happened this way

    получи́лось так, что... безл. — it so happened that...

    про́сто здо́рово получи́лось! безл.it was just great!

    2) (из; возникать в результате) come out (of)

    из э́того ничего́ не получи́лось — nothing came out of it

    из э́того ничего́ хоро́шего не полу́чится — this will take you nowhere; this will do no good

    из него́ полу́чится хоро́ший учи́тель [муж; рабо́тник] — he is going to make a good teacher [husband; worker]

    3) несов. ( проходить или завершаться успешно) make progress; сов. succeed; be [turn out] successful

    ну как, получа́ется? — well, are you making any progress?

    получи́лось ли у вас устро́иться на рабо́ту? — did you manage to get a job?

    у меня́ не получи́лось успе́ть к сро́ку — I didn't manage to meet the deadline

    у тебя́ полу́чится — you'll make it

    4) страд. к получать
    ••

    хоте́ли как лу́чше, а получи́лось как всегда́ погов. — we tried our best, but it was a botch-up as usual; ≈ we tried our best, you know the rest

    Новый большой русско-английский словарь > получаться

  • 8 устройство защиты от импульсных перенапряжений

    1. voltage surge protector
    2. surge protector
    3. surge protective device
    4. surge protection device
    5. surge offering
    6. SPD

     

    устройство защиты от импульсных перенапряжений
    УЗИП

    Устройство, которое предназначено для ограничения переходных перенапряжений и отвода импульсных токов. Это устройство содержит по крайней мере один нелинейный элемент.
    [ ГОСТ Р 51992-2011( МЭК 61643-1: 2005)]

    устройство защиты от импульсных разрядов напряжения
    Устройство, используемое для ослабления действия импульсных разрядов перенапряжений и сверхтоков ограниченной длительности. Оно может состоять из одного элемента или иметь более сложную конструкцию. Наиболее распространенный тип SPD - газонаполненные разрядники.
    (МСЭ-Т K.44, МСЭ-Т K.46, МСЭ-Т K.57,, МСЭ-Т K.65, МСЭ-Т K.66)
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    См. также:

    • импульсное перенапряжение
    • ГОСТ Р 51992-2011( МЭК 61643-1: 2005)
      Устройства защиты от импульсных перенапряжений низковольтные.
      Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах.
      Технические требования и методы испытаний

    КЛАССИФИКАЦИЯ  (по ГОСТ Р 51992-2011( МЭК 61643-1: 2005)) 
     


    ВОПРОС: ЧТО ТАКОЕ ТИПЫ И КЛАССЫ УЗИП ?

    Согласно классификации ГОСТ, МЭК а также немецкого стандарта DIN, Устройства Защиты от Импульсных Перенапряжений УЗИП делятся на разные категории по методу испытаний и месту установки.

    Класс 1 испытаний соответствует Типу 1 и Классу Требований B
    Класс 2 испытаний соответствует Типу 2 и Классу Требований C
    Класс 3 испытаний соответствует Типу 3 и Классу Требований D

    ВОПРОС: ЧЕМ УЗИП ТИП 1 ОТЛИЧАЕТСЯ ОТ УЗИП ТИП 2?

    УЗИП тип 1 устанавливаются на вводе в здание при воздушном вводе питания или при наличии системы внешней молниезащиты. УЗИП в схеме включения предназначен для отвода части прямого тока молнии. В соответствии с ГОСТ Р 51992-2002, УЗИП 1-го класса испытаний ( тип 1) испытываются импульсом тока с формой волны 10/350 мкс.
    УЗИП тип 2 служат для защиты от наведённых импульсов тока и устанавливаются либо после УЗИП тип 1, либо на вводе в здание при отсутствии вероятности попадания части тока молнии. УЗИП 2 класса испытаний (тип 2) испытываются импульсом тока с формой 8/20 мкс.
    ВОПРОС: ГДЕ ПРИМЕНЯЕТСЯ УЗИП ТИПА 3 ?

    Устройства для Защиты от Импульсных Перенапряжений Типа 3 предназначены для "тонкой" защиты наиболее ответственного и чувствительного электрооборудования, например медицинской аппаратуры, систем хранения данных и пр. УЗИП Типа 3 необходимо устанавливать не далее 5 метров по кабелю от защищаемого оборудования. Модификации УЗИП Типа 3 могут быть выполнены в виде адаптера сетевой розетки или смонтированы непосредственно в корпусе или на шасси защищаемого прибора. Для бытового применения доступна версия MSB06 скрытого монтажа, за обычной сетевой розеткой.

    ВОПРОС: ЗАЧЕМ НУЖЕН СОГЛАСУЮЩИЙ ДРОССЕЛЬ?

    Для правильного распределения мощности импульса между ступенями защиты ставят линию задержки в виде дросселя индуктивностью 15 мкГн или отрезок кабеля длиной не менее 15 м, имеющего аналогичную индуктивность. В этом случае сначала сработает УЗИП 1-го класса и возьмёт на себя основную энергию импульса, а затем устройство 2-го класса ограничит напряжение до безопасного уровня.

    ВОПРОС: ЗАЧЕМ СТАВИТЬ УЗИП, ЕСЛИ НА ВВОДЕ УЖЕ СТОИТ АВТОМАТ ЗАЩИТЫ И УЗО?

    Вводной автомат (например на 25, 40, 63 А) защищает систему электроснабжения от перегрузки и коротких замыканий со стороны потребителя. Устройство защитного отключения УЗО (например, с током отсечки 30 или 100 мА) защищает человека от случайного поражения электрическим током.
    Но ни одно из этих устройств не может защитить электрическую сеть и оборудование от микросекундных импульсов большой мощности. Такую защиту обеспечивает только Устройство Защиты от Импульсных Перенапряжений УЗИП со временем срабатывания в наносекундном диапазоне.

    ВОПРОС: КАКОЕ УСТРОЙСТВО ЛУЧШЕ ЗАЩИТИТ ОТ ГРОЗЫ: УЗИП ИЛИ ОПН ?

    УЗИП - это официальное (ГОСТ) наименование всего класса устройств для защиты от последствий токов молний и импульсных перенапряжений в сетях до 1000 В. В литературе, в публикациях в интернете до сих пор встречаются названия - ОПН (Ограничитель перенапряжения), Разрядник, Молниеразрядник, Грозоразрядник - которые применительно к сетям до 1000 Вольт означают по сути одно устройство - это УЗИП. Для организации эффективной молниезащиты необходимо обращать внимание не на название устройства, а на его характеристики.

    ВОПРОС: КАК СРАВНИТЬ УЗИП РАЗНЫХ ПРОИЗВОДИТЕЛЕЙ?

    Все УЗИП, продаваемые на территории России, должны производиться и испытываться в соответствии с ГОСТ Р 51992-2002( аналог международного стандарта МЭК 61643-1-98). ГОСТ Р 51992-2002 предусматривает наличие у каждого устройства ряда характеристик, которые производитель обязан указать в паспорте и на самом изделии.

    Класс испытаний (Тип) 1, 2 или 3
    Импульсный ток Iimp (10/350 мкс) для УЗИП 1 класса
    Номинальный импульсный ток In (8/20 мкс)
    Максимальный импульсный ток Imax (8/20 мкс)
    Уровень напряжения защиты Up, измеренный при In

    По этим характеристикам и происходит сравнение. Замечание: некоторые производители указывают значения импульсных токов на фазу (модуль), а другие - на устройство в целом. Для сравнения их надо приводить к одному виду.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


    ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ УСТРОЙСТВ ЗАЩИТЫ ОТ
    ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ В НИЗКОВОЛЬТНЫХ СИЛОВЫХ РАСПРЕДЕЛИТЕЛЬНЫХ СЕТЯХ
    ЗОРИЧЕВ А.Л.,
    заместитель директора
    ЗАО «Хакель Рос»

    В предыдущих номерах журнала были изложены теоретические основы применения устройств защиты от импульсных перенапряжений (УЗИП) в низковольтных электрических сетях. При этом отмечалась необходимость отдельного более детального рассмотрения некоторых особенностей эксплуатации УЗИП, а также типовых аварийных ситуаций, которые могут возникнуть при этом.

    1. Диагностика устройств защиты от перенапряжения
    Конструкция и параметры устройств защиты от импульсных перенапряжения постоянно совершенствуются, повышается их надежность, снижаются требования по техническому обслуживанию и контролю. Но, не смотря на это, нельзя оставлять без внимания вероятность их повреждения, особенно при интенсивных грозах, когда может произойти несколько ударов молнии непосредственно в защищаемый объект или вблизи от него во время одной грозы. Устройства защиты, применяемые в низковольтных электрических сетях и в сетях передачи информации подвержены так называемому старению (деградации), т.е. постепенной потере своих способностей ограничивать импульсные перенапряжения. Интенсивнее всего процесс старения протекает при повторяющихся грозовых ударах в течении короткого промежутка времени в несколько секунд или минут, когда амплитуды импульсных токов достигают предельных максимальных параметров I max (8/20 мкс) или I imp (10/350 мкс) для конкретных типов защитных устройств.

    Повреждение УЗИП происходит следующим образом. Разрядные токи, протекающие при срабатывании защитных устройств, нагревают корпуса их нелинейных элементов до такой температуры, что при повторных ударах с той же интенсивностью (в не успевшее остыть устройство) происходит:

    −   у варисторов - нарушение структуры кристалла (тепловой пробой) или его полное разрушение;
    −   у металлокерамических газонаполненных разрядников (грозозащитных разрядников) - изменение свойств в результате утечки газов и последующее разрушение керамического корпуса;

    −  у разрядников на основе открытых искровых промежутков -за счет взрывного выброса ионизированных газов во внутреннее пространство распределительного щита могут возникать повреждения изоляции кабелей, клеммных колодок и других элементов электрического шкафа или его внутренней поверхности. На практике известны даже случаи значительной деформации металлических шкафов, сравнимые только с последствиями взрыва ручной гранаты. Важной особенностью при эксплуатации разрядников этого типа в распределительных щитах является также необходимость повышения мер противопожарной безопасности.

    По указанным выше причинам все изготовители устройств защиты от перенапряжения рекомендуют осуществлять их регулярный контроль, особенно после каждой сильной грозы. Проверку необходимо осуществлять с помощью специальных тестеров, которые обычно можно заказать у фирм, занимающихся техникой защиты от перенапряжений. Контроль, осуществляемый другими способами, например, визуально или с помощью универсальных измерительных приборов, в этом случае является неэффективным по следующим причинам:

    −  Варисторное защитное устройство может быть повреждёно, хотя сигнализация о выходе варистора из строя не сработала. Варистор может обладать искажённой вольтамперной характеристикой (более высокая утечка) в области токов до 1 мA (область рабочих токов при рабочем напряжении сети; настоящую область не возможно проверить с помощью обычно применяемых приборов). Проверка осуществляется минимально в 2-х точках характеристики, напр. при 10 и 1000 мкА, с помощью специального источника тока с высоким подъёмом напряжения (1 до 1,5 кВ).

    −    Металлокерамический газонаполненный (грозовой) разрядник - с помощью визуального контроля можно заметить только поврежденный от взрыва внешний декоративный корпус устройства (или его выводы). Что бы выяснить состояние самого разрядника необходимо разобрать внешний корпус, но даже при таком контроле практически нельзя обнаружить утечку его газового заряда. Контроль напряжения зажигания грозового разрядника с помощью обыкновенных измерительных приборов выполнить очень трудно, он осуществляется при помощи специализированных тестеров.

     −   Разрядник с открытым искровым промежутком - проверку исправной работы можно осуществить только после его демонтажа и измерения с помощью генератора грозового тока с характеристикой 10/350 мкс по заказу у изготовителя устройств для защиты от импульсных перенапряжений.
     

    2. Защита от токов утечки и короткого замыкания в устройствах защиты от импульсных перенапряжений

    Основным принципом работы устройства защиты от импульсных перенапряжений является выравнивание потенциалов между двумя проводниками, одним из которых является фазный (L) проводник, а другим нулевой рабочий (N) или (РЕN) проводник, т.е. устройство включается параллельно нагрузке. При этом, в случае выхода из строя УЗИП (пробой изоляции, пробой или разрушение нелинейного элемента) или невозможности гашения сопровождающего тока (в случае применения искровых разрядников или разрядников скользящего разряда) возможно возникновение режима короткого замыкания между данными проводниками, что может привести к повреждению электроустановки и даже возникновению пожара. Стандартами МЭК предусматривается два обязательных способа защиты электроустановок потребителя 220/380 В от подобного рода ситуаций.

    2.1. Устройство теплового отключения в варисторных устройствах защиты от импульсных перенапряжений

    Имеющееся в варисторных ограничителях перенапряжений устройство отключения при перегреве (тепловая защита), как правило, срабатывает в результате процесса старения варистора. Суть явления заключается в том, что при длительной эксплуатации, а также в результате воздействий импульсов тока большой амплитуды происходит постепенное разрушение p-n переходов в структуре варистора, что приводит к снижению значения такого важного параметра, как наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc. Этот параметр определяется для действующего напряжения электрической сети и указывается производителями защитных устройств в паспортных данных и, как правило, непосредственно на корпусе защитного устройства. Для примера: если на корпусе защитного устройства указано значение Uc = 275 В, это обозначает, что устройство будет нормально функционировать в электропитающей сети номиналом 220 В при увеличении действующего напряжения на его клеммах до 275 В включительно (значение взято с достаточным запасом при условии выполнения электроснабжающей организацией требований ГОСТ 13109 «Нормы качества электрической энергии в системах электроснабжения общего назначения»).

    В результате «старения» варистора значение Uc снижается и в определенный момент времени может оказаться меньше чем действующее напряжение в сети. Это приведет к возрастанию токов утечки через варистор и быстрому повышению его температуры, что может вызвать деформацию корпуса устройства, проплавление фазными клеммами пластмассы и, в конечном итоге, короткое замыкание на DIN-рейку и даже пожар.

    В связи с этим, для применения в электроустановках рекомендуются только те варисторные ограничители перенапряжения, которые имеют в своем составе устройство теплового отключения (терморазмыкатель). Конструкция данного устройства, как правило, очень проста и состоит из подпружиненного контакта, припаянного легкоплавким припоем к одному из выводов варистора, и связанной с ним системы местной сигнализации. В некоторых устройствах дополнительно применяются «сухие» контакты для подключения дистанционной сигнализации о выходе ограничителя перенапряжений из строя, позволяющие с помощью физической линии передавать информацию об этом на пульт диспетчера или на вход какой-либо системы обработки и передачи телеметрических данных. (См. рис. 1).

    5018

    2.2. Применение быстродействующих предохранителей для защиты от токов короткого замыкания

    Несколько другая ситуация возникает в случае установившегося длительного превышения действующего напряжения в сети над наибольшим длительно допустимым рабочим напряжением защитного устройства (Uc), определенным ТУ для данного УЗИП. Примером такой ситуации может быть повышение напряжения по вине поставщика электроэнергии или обрыв (отгорание) нулевого проводника при вводе в электроустановку (в трехфазной сети с глухозаземленной нейтралью трансформатора). Как известно, в последнем случае к нагрузке может оказаться приложенным межфазное напряжение 380 В. При этом устройство защиты от импульсных перенапряжений сработает, и через него начнет протекать ток. Величина этого тока будет стремиться к величине тока короткого замыкания (рассчитывается по общеизвестным методикам для каждой точки электроустановки) и может достигать нескольких сотен ампер. Практика показывает, что устройство тепловой защиты не успевает отреагировать в подобных ситуациях из-за инерционности конструкции. Варистор, как правило, разрушается в течение нескольких секунд, после чего режим короткого замыкания также может сохраняться через дугу (по продуктам разрушения и горения варистора). Как же как и в предыдущем случае, возникает вероятность замыкания клемм устройства на корпус шкафа или DIN-рейку при расплавлении пластмассы корпуса и возможность повреждения изоляции проводников в цепях включения защитных устройств. Сказанное выше относится не только к варисторным ограничителям, но и к УЗИП на базе разрядников, которые не имеют в своем составе устройства теплового отключения. На фотографии (рис. 2) показаны последствия подобной ситуации, в результате которой произошел пожар в распределительном щите.

    5019

    Рис.2 Выход из строя варисторного УЗИП привел к пожару в ГРЩ.

    На рисунке 3 показано варисторное УЗИП, которое в результате аварийной ситуации стало источником пожара в щите.

    5020

    Рис.3

    Для того чтобы предотвратить подобные последствия рекомендуется устанавливать последовательно с устройствами защиты от импульсных перенапряжений предохранители с характеристиками срабатывания gG или gL (классификация согласно требованиям стандартов ГОСТ Р 50339. 0-92 ( МЭК 60269-1-86) или VDE 0636 (Германия) соответственно).

    Практически все производители устройств защиты от импульсных перенапряжений в своих каталогах приводят требования по номинальному значению и типу характеристики срабатывания предохранителей дополнительной защиты от токов короткого замыкания. Как уже указывалось выше, для этих целей используются предохранители типа gG или gL, предназначенные для защиты проводок и распределительных устройств от перегрузок и коротких замыканий. Они обладают значительно меньшим (на 1-2 порядка) временем срабатывания по сравнению с автоматическими выключателями тех же номиналов. При этом предохранители имеют более высокую стойкость к импульсным токам значительных величин. Практический опыт и данные экспериментальных испытаний показывают, что автоматические выключатели очень часто повреждаются при воздействии импульсных перенапряжений. Известны случаи подгорания контактов или приваривания их друг к другу. И в том и в другом случае автоматический выключатель не сможет в дальнейшем выполнять свои функции.

    Возможны различные варианты применения предохранителей и, соответственно, существует ряд особенностей, которые необходимо учитывать еще на этапе проектирования схемы электроснабжения или при изготовлении щитовой продукции. Одна из таких особенностей заключается в том, что в случае, если в качестве защиты от токов короткого замыкания будет использоваться только общая защита (вводные предохранители), то при коротком замыкании в любом УЗИП (первой, второй или третьей ступени) всегда будет обесточиваться вся электроустановка в целом или какая-то ее часть. Применение предохранителей, включенных последовательно с каждым защитным устройством, исключает такую ситуацию. Но при этом встает вопрос подбора предохранителей с точки зрения селективности (очередности) их срабатывания. Решение этого вопроса осуществляется путем применения предохранителей тех типов и номиналов, которые рекомендованы производителем конкретных моделей устройств защиты от перенапряжений.

    Пример установки предохранителей F7-F12 приведен на рисунке 4.

     

    5021

    Рис.4 Установка защитных устройств в TN-S сеть 220/380 В

     

    ПРИМЕР: При использовании в схеме, приведенной на рисунке 4, разрядников HS55 в первой ступени защиты и варисторных УЗИП PIII280 во второй ступени применение предохранителей F5-F7 и F8-F10 будет обусловлено выбором номинального значения предохранителей F1-F3:

    ·         При значении F1-F3 более 315 А gG, значения F7-F9 и F10-F12 выбираются ­315 А gG и 160 А gG соответственно;

    ·         При значении F1-F3 менее 315 А gG, но более 160 А gG, предохранители F7-F9 можно не устанавливать, F10-F12 выбираются - 160 А gG;

    ·         При значении F1-F3 менее 160 А gG, предохранители F7-F12 можно не устанавливать.

     

    Иногда может потребоваться, чтобы в случае возникновения короткого замыкания в защитных устройствах не срабатывал общий предохранитель на вводе электропитающей установки. Для этого необходимо устанавливать в цепи каждого УЗИП предохранители с учетом коэффициента (1,6). Т.е. если предохранитель на входе электроустановки имеет номинальное значение 160 А gG, то предохранитель включенный последовательно с УЗИП должен иметь номинал 100 А gG.

    Применение для данных целей автоматических выключателей осложняется причинами, перечисленными выше, а также не соответствием их времятоковых характеристик характеристикам предохранителей.

    3. Часто встречающиеся недостатки в конструктивном исполнении устройств защиты от импульсных перенапряжений

    Многими фирмами-производителями предлагаются защитные устройства классов I и II, состоящие из базы, предназначенной для установки на DIN-рейку, и сменного модуля с нелинейным элементом (разрядником или варистором) с ножевыми вставными контактами. Такое конструктивное исполнение кажется на вид более выгодным и удобным для заказчика, чем монолитный корпус, в виду возможности более простого осуществления измерения сопротивления изоляции электропроводки (при измерениях повышенными напряжениями этот модуль можно просто изъять). Однако способность сконструированных таким способом контактов пропускать импульсные токи не превышает предел Imax = 25 kA для волны (8/20 мкс) и Iimp = 20 kA для волны (10/350 мкс).

    Несмотря на это, некоторые изготовители показывают в рекламных каталогах для таких защитных устройств максимальные разрядные способности величинами до Imax = 100 kA (8/20 мкс) или Iimp = 25 kA (10/350 мкс). К сожалению, это не подтверждается практическими данными. Уже при первом ударе испытательного импульса тока с такой амплитудой произойдут пережоги и разрушение не только ножевых контактов сменного модуля, но также и повреждение контактов клемм в базе. Разрушительное воздействие испытательного импульса тока Imax = 50 kA (8/20 мкс) на механическую часть такой системы и ножевой контакт показано на следующих фотографиях (рис. 5). Очевидно, что после такого воздействия сложным становится, собственно, сам вопрос извлечения вставки из базы, так как их контакты могут привариться друг к другу. Даже если вставку удастся отсоединить от базы, последнюю будет нельзя использовать далее из-за подгоревших контактов, которые приведут к резкому возрастанию переходного сопротивления и, соответственно, уровня защиты данного УЗИП.

    5022

     

    Для того чтобы избежать подобных последствий, защитные устройства модульной конструкции необходимо применять только тогда, когда существует гарантия, что ожидаемые импульсные воздействия не превысят указанных выше значений. Это может быть выполнено в случае правильного выбора типов и классов УЗИП для конкретной электроустановки и согласования их параметров между ступенями защиты.

    4. Использование УЗИП для защиты вторичных источников питания 

    Одним из наиболее часто используемых вторичных источников питания является выпрямитель. Следует отметить, что практика установки элементов защиты от перенапряжений (разрядников, варисторов и т.п.) на платах или внутри блоков выпрямителя, является не правильной с нашей точки зрения. Существующий опыт показывает, что эти варисторы как правило рассчитаны на токи 7 – 10 кА (форма импульса 8/20 мкС) и по своим параметрам соответствуют третьему классу защиты согласно ГОСТ Р 51992-2002( МЭК 61643-1-98). Как правило, эксплуатирующие организации считают данный тип защиты достаточным и никаких дополнительных мер для повышения надежности работы оборудования не принимают. Однако, при отсутствии дополнительных внешних устройств защиты от импульсных перенапряжений более высокого класса, а так же при возникновении длительных превышений рабочего напряжения питающей сети в данной ситуации возможно возникновение двух типовых аварийных ситуаций:

    a) Токи значительных величин, возникающие при срабатывании установленных внутри модуля варисторов, будут протекать по печатным проводникам плат или проводам внутри блоков выпрямителя по кратчайшему пути к заземляющей клемме стойки. Это может вызвать выгорание печатных проводников на платах и возникновению на параллельных незащищенных цепях наводок, которые в свою очередь приведут к выходу из строя электронных элементов блока выпрямителя. При превышении максимальных импульсных токов, определенных для данного варистора изготовителем, возможно, его возгорание и даже разрушение, что может привести к пожару и механическому повреждению самого выпрямителя (более подробно описано в п.п. 2.1).

    b) Несколько другая ситуация возникает в случае длительного установившегося превышения действующего напряжения в сети над максимальным допустимым рабочим напряжением Uc, определенным ТУ для данного варистора (как правило используются варисторы с Uc = 275 В). Подробно данная ситуация была описана выше (см п.п. 2.2). В результате описанного воздействия появляется вероятность возгорания печатных плат и внутренней проводки, а так же возникновения механических повреждений (при взрыве варистора), что подтверждается статистикой организаций, осуществляющих ремонт выпрямителей.

    Пример таких повреждений показан на рисунке 6.

    5023

    Рис.6

     С точки зрения решения проблем описанных в пункте (а), наиболее правильным является вариант установки защитных устройств, при котором они размещаются в отдельном защитном щитке или в штатных силовых и распределительных щитах электроустановки объекта. Применение внешних дополнительных устройств защиты позволяет защитить выпрямитель от импульсных перенапряжений величиной в сотни киловольт и соответственно снизить до допустимого (7 – 10 кА) значения величины импульсных токов, которые будут протекать через варисторы, встроенные в выпрямитель, или практически полностью исключить их.

    Для защиты оборудования от длительного установившегося превышения действующего напряжения в сети (пункт b) можно использовать устройства контроля напряжения фазы или подобные им (см. рис. 7).

    5024

    Рис. 7 Подключение устройства контроля фаз РКФ-3/1

    [ http://www.energo-montage.ru/pages/top/articles/osobennosti_ekspluatacii_uzip/index_76.html]

    Тематики

    Синонимы

    EN

    3.1.45 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит, по крайней мере, один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.53 устройство защиты от импульсных перенапряжений (surge protective device); SPD: Устройство, предназначенное для ограничения перенапряжения и скачков напряжения; устройство содержит по крайней мере один нелинейный компонент.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Русско-английский словарь нормативно-технической терминологии > устройство защиты от импульсных перенапряжений

  • 9 воздухораспределитель

    1. supply air outlet
    2. luminaire
    3. air terminal unit
    4. air terminal device
    5. air outlet
    6. air distributor
    7. air dispenser
    8. air diffuser

     

    воздухораспределитель
    Концевой элемент для выпуска или отвода в обслуживаемое помещение требуемого количества воздуха.
    Примечания:
    1. Виды воздухораспределителей по конструктивному признаку:
    - решетка,
    - насадок,
    - перфорированная панель.
    2. По месту установки воздухораспределители могут быть:
    - потолочные,
    - пристенные,
    - напольные.
    3. По характеру организации приточной струи воздухораспределители могут быть:
    - с подачей компактной струи,
    - с подачей неполной веерной струи,
    - с подачей полной веерной струи,
    - с подачей плоской струи,
    - с двухструйной подачей. 
    [ ГОСТ 22270-76]


    Воздухораспределение в помещениях: классификация систем

    Воздухораспределение является одной из самых сложных задач, которая, по существу, определяет конечный, потребительский эффект работы вентиляции и кондиционирования воздуха. Как подать воздух в помещение, чтобы избежать сквозняков и застойных зон, обеспечить равномерное распределение температуры воздуха в рабочей (обслуживаемой) зоне, не допустить перетопов, избыточного охлаждения и вентилирования помещения, загрязнения «чистых» зон вредными выделениями «грязных»? Все эти вопросы рассматриваются при выборе схемы организации воздухообмена и типа воздухораспределителей, непосредственно подающих воздух в помещение.

    Сегодня мы публикуем обзор различных технологий вентиляции (схем организации воздухообмена) и видов воздухораспределителей.


    Воздухораспределители являются важнейшими элементами систем кондиционирования воздуха и вентиляции. Однако выбор систем воздухораспределения является достаточно сложной задачей и требует знания всех разработок в этой области.

    Задача воздухораспределителей состоит в обеспечении равномерного распределения воздуха в помещении с целью:

    • ассимиляции тепловой нагрузки, как положительной, так и отрицательной;
    • ассимиляции взвешенной в воздухе мельчайшей пыли и удаление ее вытяжной системой;
    • поддержания в помещении заданной минимальной неравномерности температуры и скорости движения воздуха (градиента температуры и скорости в пределах установленного диапазона по вертикали и горизонтали).

    При проектировании систем воздухораспределения следует учитывать фактические особенности помещения, которые могут влиять на распространение (циркуляцию) воздуха:

    • наличие препятствий на пути движения воздушных струй;
    • наличие локальных интенсивных тепловых источников;
    • изменения температуры и/или расхода воздуха (например, в системах с переменным расходом) в приточных струях, влияющие на их дальнобойность.

    При выборе типа и размера воздухораспределителей (ВР) не следует забывать о том, что любой из них является источником шума в обслуживаемом помещении. Уровень шума ВР, выражаемый в Дб(А), составляет обычно от 25 до 35 единиц. В любом случае после монтажа оборудования следует самым тщательным образом измерить фактические параметры создаваемого ВР шума. Кроме того, необходимо также определить параметры потери нагрузки – в зависимости от значений объемного расхода воздуха они варьируются в диапазоне от 5 до 35 Па.

    Схемы организации воздухообмена в помещении определяются параметрами системы кондиционирования, аэрогидродинамическими характеристиками приточных и вытяжных устройств, их расположением в обслуживаемом помещении, которое часто обусловлено архитектурными решениями.

    Воздухораспределители можно классифицировать по схемам организации воздухообмена, которые в свою очередь делятся на две основные группы: перемешивающие и вытесняющие.

    Перемешивающие системы вентиляции

    Перемешивающую вентиляцию называют еще «распределением воздуха посредством турбулентного потока». Это наиболее популярная система распределения воздуха. Она организуется при помощи ВР, подающих воздух в помещение воздушными струями, имеющими высокую скорость и турбулентность, вызывающими интенсивную циркуляцию воздуха. В результате происходит перемешивание свежего воздуха приточной струи с воздухом помещения. Если происходит полное перемешивание, на определенном расстоянии от места притока параметры воздуха (температура, относительная влажность, скорость движения), а также содержание загрязняющих веществ будут одинаковыми в любой точке обслуживаемого помещения. Объемный расход приточного воздуха, как правило, невелик по сравнению с общей перемещаемой массой воздуха в помещении. Начальная скорость приточной струи может изменяться в зависимости от конкретных условий в очень широком диапазоне – от 2 до 20 м/с. Разность температур между приточным воздухом и воздухом в помещении также может быть достаточно высокой как в режиме отопления, так и в режиме охлаждения помещения. Температура воздуха будет практически одинаковой там, где обеспечивается достаточно интенсивное перемешивание воздуха, и, напротив, в застойных зонах могут иметь место значительные температурные перепады. Следует отметить, что на наличие и размеры застойных зон, помимо приточных струй, оказывают влияние естественные конвективные потоки, формируемые в конкретном помещении. Формирование конвективных потоков и их характеристик определяется множеством факторов, таких, в частности, как наличие локальных источников тепла, их мощность, размеры и расположение в помещении, теплоизоляция ограждений помещения и т. п. Отметим, что критичными представляются случаи, когда застойные зоны образуются в рабочей (обслуживаемой) зоне помещения; менее критичны ситуации, когда застойные зоны расположены за пределами рабочей зоны, например, в верхней зоне помещения. Наличие в помещении застойных зон, независимо от вида используемого ВР, более неприятно при отопительном режиме работы вентиляции, в силу естественной тенденции нагретого воздуха перемещаться вверх за пределы рабочей зоны.

    Размеры застойных зон можно уменьшить путем соответствующего увеличения объемного расхода и скорости приточного воздуха. Эта, на первый взгляд, банальная операция не должна нарушать комфорт пользователей, находящихся на рабочем участке. В этом смысле довольно проблематичным представляется использование перемешивающих систем с напольным распределением воздуха, когда из-за высокой скорости движения воздуха в обслуживаемой зоне могут возникать условия ощутимого дискомфорта. Если же условия комфорта не являются обязательными (например, на участках, где не предусмотрено постоянное присутствие людей), то явление температурного расслоения воздуха по высоте может позволить снизить холодильную нагрузку.

    Виды ВР для перемешивающих систем воздухораспределения приведены в табл. 1. Классификация ВР, представленная в табл. 1, не претендует на то, чтобы быть исчерпывающей.

    Таблица 1
    Виды воздухораспределителей для перемешивающей вентиляции

    Вид

    Подвиды

    Приточные решетки

    - для установки в стене или воздуховоде
    - с одним или двумя рядами лопаток
    - с неподвижными горизонтальными лопатками

    Потолочные ВР (плафоны)

    - многодиффузорные круглые
    - многодиффузорные квадратные (прямоугольные) с различными направлениями приточных струй (секторные кольцевые, с перфорированной крышкой и т. п.)

    ВР, формирующие быстро
    затухающие струи

    - щелевые, устанавливаемые в потолке или стене
    - квадратные или круглые, устанавливаемые в потолке
    - с регулируемыми элементами (стенные, потолочные)
    - с перфорированной элементами, устанавливаемые в потолке или стене

    ВР, формирующие закрученные струи

    - круглые или квадратные с неподвижными или регулируемыми закручивателями
    - щелевые, устанавливаемые в стене

    ВР с регулируемой геометрией

    - с регулируемыми лопатками
    - с неподвижными лопатками и с регулируемым «цилиндром», двухструйные

    Сопловые ВР

    - с шаровой или полусферической камерой
    - с воздухораздающими элементами-закручивателями
    - с рядом воздухораздающих элементов

    ВР напольные

    - круглые, с закрученным воздушным потоком
    - кресельные
    - напольные и лестничные решетки

    См. также:

    Перевод с итальянского С. Н. Булекова.
    Научное редактирование выполнено вице-президентом НП «АВОК» Е. О. Шилькротом и В. Н. Посохиным, заведующим кафедрой ТГВ Казанского государственного архитектурно-строительного университета (КГАСУ)

    [ http://www.abok.ru/for_spec/articles.php?nid=4280]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > воздухораспределитель

См. также в других словарях:

  • НЕГАТИВНЫЕ ЭФФЕКТЫ ПСИХОТЕРАПИИ —         Несмотря на широкое распространение психотерапии, большинство авторов считает, что основные ее методы не имеют противопоказаний и безопасны. Как правило, речь может идти лишь об относительных противопоказаниях и негативных последствиях… …   Психотерапевтическая энциклопедия

  • ЭКОНОМИЯ НА МАСШТАБЕ — (эффект масштаба) (economies of scale, scale effect) Сокращение средних издержек производства и, следовательно, себестоимости единицы продукции при увеличении объемов производства. Если при увеличении объемов производства средние издержки… …   Словарь бизнес-терминов

  • Экономия на масштабе — (эффект масштаба)   снижение себестоимости единицы продукции при увеличении объемов производства. Экономия на масштабе позволяет производителю предлагать свою продукцию по более конкурентоспособным ценам и, таким образом, захватывать большую долю …   Толковый словарь «Инновационная деятельность». Термины инновационного менеджмента и смежных областей

  • Безработица — (Unemployment) Безработица – это такое социально экономическое явление, при котором часть взрослого трудоспособного населения, не имеет работы и активно ее ищет Безработица в России, Китае, Японии, США и странах Еврозоны, в том числе в кризисные… …   Энциклопедия инвестора

  • ИОАНН ДУНС СКОТ — [лат. Ioannes (Johannes) Duns Scotus] († 8.11.1308, Кёльн), средневек. философ и богослов, католич. священник, член монашеского ордена францисканцев; в католич. Церкви прославлен в лике блаженных (пам. зап. 8 нояб.). Жизнь. Иоанн Дунс Скот. 1473… …   Православная энциклопедия

  • Автоколебания напорной системы гидроэлектростанции — физическое явление, приводящее к внезапному возникновению и резкому неконтролируемому росту пульсаций давления и расхода в потоке воды, проходящем через турбину этой станции. Явление аналогичного типа на нагнетающих турбомашинах – насосах и… …   Википедия

  • НАУКА — особый вид познавательной деятельности, направленный на выработку объективных, системно организованных и обоснованных знаний о мире. Взаимодействует с др. видами познавательной деятельности: обыденным, художественным, религиозным, мифологическим …   Философская энциклопедия

  • КЛАСС ИНФУЗОРИИ (INFUSORIA или CILIATA) —          Простейшие этого обширного по количеству видов около 6 тыс. класса широко распространены в природе. (Эта цифра приводится в сводке Корлисса, 1961 г.). К ним относятся многочисленные обитатели морских и пресных вод. Некоторые виды… …   Биологическая энциклопедия

  • ТИП ОБОЛОЧНИКИ (TUNICAТА) —          Оболочники, или туникаты, к которым относятся асцидии, пиросомы, сальны и аппендикулярии, одна из наиболее удивительных групп морских животных. Свое название они получили за то, что тело их одето снаружи особой студенистой оболочкой, или …   Биологическая энциклопедия

  • Изнасилование в уголовном праве России — Изнасилование в уголовном праве России  преступление, ответственность за которое предусмотрена ст. 131 УК РФ. Изнасилование определяется Уголовным кодексом как половое сношение с применением насилия или с угрозой его применения к потерпевшей …   Википедия

  • РАСТИТЕЛЬНЫЕ СООБЩЕСТВА —         Выдающийся советский ученый В. И. Вернадский разработал представление о биосфере наружной оболочке Земли, свойства которой определяются жизнедеятельностью организмов.         В. И. Вернадский понимал биосферу широко, включая в нее не… …   Биологическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»